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Learning Deep Global Multi-Scale and Local
Attention Features for Facial Expression
Recognition in the Wild

Zengqun Zhao™, Graduate Student Member, IEEE, Qingshan Liu

Abstract—Facial expression recognition (FER) in the wild
received broad concerns in which occlusion and pose variation are
two key issues. This paper proposed a global multi-scale and local
attention network (MA-Net) for FER in the wild. Specifically,
the proposed network consists of three main components: a
feature pre-extractor, a multi-scale module, and a local attention
module. The feature pre-extractor is utilized to pre-extract
middle-level features, the multi-scale module to fuse features
with different receptive fields, which reduces the susceptibility
of deeper convolution towards occlusion and variant pose, while
the local attention module can guide the network to focus on
local salient features, which releases the interference of occlusion
and non-frontal pose problems on FER in the wild. Extensive
experiments demonstrate that the proposed MA-Net achieves the
state-of-the-art results on several in-the-wild FER benchmarks:
CAER-S, AffectNet-7, AffectNet-8, RAFDB, and SFEW with
accuracies of 88.42%, 64.53%, 60.29%, 88.40%, and 59.40%
respectively. The codes and training logs are publicly available
at https://github.com/zengqunzhao/MA-Net.

Index  Terms—Facial  expression  recognition,
convolutional neural networks, multi-scale, local attention.

deep

I. INTRODUCTION

ACIAL expression, one of the most powerful and natural

signals for human beings to convey their emotions,
plays a significant role in communication. Automatic facial
expression recognition (FER) has become an increasing
fascinating topic in computer vision due to its applications
in various fields, such as human-computer interaction
(HCI) [1], driver fatigue monitoring [2], medical diagnosis
[3], [4], and so on. FER aims to classify an image or a
video clip into one of several basic emotions, i.e., neutral,
happiness, sadness, surprise, fear, disgust, anger, and even
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contempt sometimes. FER can be divided into static FER
and dynamic FER according to the input of the image or
video, and laboratory-controlled and in-the-wild condition
according to the scenario. In recent years, FER has achieved
amazing performance on laboratory-controlled datasets
[5]-[11], such as CK+ [12] and JAFER [13] facial expression
datasets, which human faces are all frontal without any
occlusion. However, problems of illumination variation,
occlusion, and pose variation are challenging FER when the
recognition scenario is transferred from laboratory-controlled
to in-the-wild condition. Performance on in-the-wild datasets,
such as CAER-S [14], RAF-DB [15], AffectNet [16], and
SFEW [17] are greatly inferior to laboratory-controlled
datasets [14], [18]-[21].

To improve the performance of FER in the wild, it is impor-
tant and necessary to address the issues of occlusion and pose
variation. Due to the fact that the occlusion and pose variation
problems lead to a significant change of facial appearance in
spatial level, the relevant studies focus mainly on image-based
FER in the wild. The early work [22]-[25] made some efforts
for addressing the occlusion problem by reconstructing the
occluded geometric or textured features. Bourel et al. [22]
proposed the enhanced Kanade-Lucas tracker to recover lost
or drifted facial points. PCA-based methods were employed
to reconstruct the positions of missing points in [23] and [24].
Hammal et al. [25] proposed a modified transferable belief
model (TBM) to recognize facial expressions from partially
occluded images. However, it is difficult to reconstruct occlu-
sion regions in the real world well. With the prevalence of
deep learning and the collection of in-the-wild datasets, much
work employed deep convolutional neural networks (CNN5s) to
address the issues of occlusion as well as pose variation. For
occlusion problems, patch-based methods are effective, which
could capture the importance of facial patches, and how to
select facial patches is a key issue to these methods. Some
methods selected facial patches of interest relied on facial
landmarks [18], [26], [27]. Wang et al. [20] employed three
kinds of patch generation schemes, namely, fixed position
cropping, random cropping, and landmark-based cropping,
which could alleviate the problem of pose variation as well.
Selecting local regions according to facial landmarks or ran-
domly cropping may result in misalignment or uncertainty. For
pose variation, some methods performed pose normalization
before FER [28], [29]. Zhang et al. [30] proposed a method
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Fig. 1.

The structure of the proposed method. The method consists of three components, including a feature pre-extractor, a multi-scale module, and a local

attention module. GAP denotes global average polling, and FC denotes a fully-connected network.

to train a single FER classifier with multi-pose examples.
Wang et al. [31] proposed an adversarial feature learning
method to address pose variation as well as identity bias.
However, the above methods require large amounts of training
data with varying poses.

Learning facial features from various perspectives may
achieve better performance under occlusion and pose variation
conditions, and the study on psychology indicates that human
face perception mechanisms extract both holistic and part
information [32]. To this end, we propose a global multi-scale
and local attention network (MA-Net) from the global and
local perspective to acquire robust features, which can address
both occlusion and pose variation problems. In CNNs, deeper
convolution has a wider receptive field with rich semantic fea-
tures, while shallower convolution has a narrow receptive field
with rich geometry features [33]. The wider receptive field in
deeper convolution is susceptible to occlusion and variant pose
while adding shallower geometry features can decrease the
susceptibility effectively so that the network can learn more
comprehensive features. Therefore, the multi-scale module is
designed to extract features with different receptive fields,
which increases the diversity and robustness of global features.
Instead of acquiring multi-scale features in a layer-wise man-
ner, inspired by Res2Net [34], we extract multi-scale features
within a single basic block. Also, the features extracted from
local salient regions are critical to solve the issues of occlusion
and non-frontal pose. Therefore, the local attention module
is designed to extract local salient features, which releases
the interference of occlusion and non-frontal pose situations.
It is worth mentioning that previous works in extraction of

local features by selecting local regions according to facial
landmarks [18] or cropping [20] may result in misalignment or
uncertainty. Different from these methods, ours is to divide the
pre-extracted feature maps into several local regions without
overlap directly, comparatively simple but efficient. Fig. 1
illustrates the main idea of the proposed method.

As shown in Fig. 1, we design a two-branch network for
learning global multi-scale and local attention features. In the
first branch, a multi-scale module is devised to learn robust
multi-scale features towards occlusion and non-frontal pose
conditions. In the second branch, the extracted feature maps
are first divided into several local feature maps along the
spatial axis without overlap, and then these local feature maps
are processed by several parallel local attention networks.
Finally, we employ a decision-level fusion to obtain recogni-
tion results. The contributions of our work can be summarized
as follows:

1) We propose a global multi-scale and local attention
network (MA-Net) for facial expression recognition in
the wild. The proposed MA-Net is capable of acquir-
ing robust both global and local features, which can
address the issues both of occlusion and pose variation
well.

2) The multi-scale module is designed to extract multi-scale
features within a single basic block, and it can
decrease the susceptibility of deeper convolution towards
occlusion and variant pose effectively.

3) The local attention module is proposed to focus on local
salient features, and it can release the interference of
occlusion and non-frontal pose problems.
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4) Experiments conducted on realistic occlusion and pose
variation test datasets demonstrate that the proposed
MA-Net attains strong robustness under occlusion and
pose variation conditions. Moreover, our MA-Net also
achieves state-of-the-art results on several benchmarks,
and codes are publicly available.

II. RELATED WORK

This paper aims at static FER in the wild, in which
occlusion and pose are two key issues, so we mainly focus
on image-based FER. Image-based FER methods can be cat-
egorized into two parts: holistic-based FER and region-based
FER.

A. Holistic-Based FER

Holistic-based methods treat the face as a whole and
focus mainly on global features. Early work mainly uti-
lized hand-crafted features or shallow learning, such as
SIFT [35], HOG [36], Gabor wavelet coefficients [37], and
sparse learning [38]. Instead of designing effective features,
Yang et al. [39] proposed a novel RankBoost method for
FER enhanced by estimated facial expression intensity. With
the rapid progress of deep learning, many methods, proposed
using deep neural networks, improved the accuracy of FER in
two ways: enhancing the complexity of the FER model and
designing novel loss functions.

To obtain excellent features by enhancing the complexity of
the FER model, Ding et al. [40] proposed FaceNet2ExpNet,
a two-stage training algorithm for FER. In the first stage,
a probabilistic distribution function was proposed to model
the high-level neuron response. In the second stage, they
performed label supervision to boost the final discriminative
capability. Xie et al. [6] proposed the DAM-CNN model uti-
lizing a SERD module to adaptively highlight the features that
were highly relevant to the FER task, and MPVS-Net based on
the encoder-decoder architecture to handle different variations.
Hayale et al. [41] proposed deep siamese neural networks with
a supervised loss function to embed verification and identifi-
cation signals into a facial expression recognition pipeline.
The latest related work proposed wide ensemble-based con-
volutional neural networks named ESR-9 [42], which could
reduce the redundancy and computational load dramatically
compared with the ensemble deep networks.

To enhance the discriminative power of the learned features
by designing novel loss functions, Cai et al. [43] proposed an
island loss to reduce the intra-class variations while enlarging
the inter-class differences simultaneously. Zeng et al. [44]
proposed a new feature loss to embed the information of
hand-crafted features into the training process of the network.
The latest related work proposed a separate loss [19] to maxi-
mize the intra-class similarity while minimizing the similarity
between different classes.

To address the problems of occlusion and pose varia-
tion, some researchers proposed occlusion- and pose-robust
methods for FER from a global perspective. To obtain the
occlusion-robust FER model, previous work mainly attempt
to reconstruct the occluded geometric or texture features.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Mao et al. [23] firstly detected facial occlusion based on
the robust principal component analysis (RPCA) and then
reconstructed occlusion and reweight AdaBoost classifica-
tion. Jiang and Jia [24] also reconstructed occlusion using
RPCA, and then utilized Eigenfaces and Fisherfaces to extract
facial expression features, respectively. Hammal et al. [25]
proposed a modified transferable belief model (TBM) to
recognized facial expressions from partially occluded images.
However, explicitly reconstruct occlusion regions in the
real-world is complicated. With the popularity of deep learn-
ing, Pan et al. [45] utilized non-occluded facial images as
privileged information, and two CNNs were trained from
occluded and non-occluded facial images respectively. Then
they fixed the non-occluded network on guiding the fine-tuning
of the occluded network.

For the pose variation problem, some methods performed
pose normalization before FER [28], [29]. Zhang et al. [30]
utilized an encoder-decoder structure to synthesize facial
images, which is expected to train a single FER classifier with
multi-pose. Zhang et al. [21] promoted it by adding a facial
geometry embedding network to extract the geometry vector.
Wang et al. [31] proposed an adversarial feature learning
method to address pose variation as well as identity bias. They
employed a pose discriminator and a subject discriminator to
classify the pose and the subject from the extracted feature
representations respectively.

B. Region-Based FER

Region-based methods divide the face into several over-
lapped or non-overlapped local regions and pay attention to
local features. Zhong et al. [46] discovered some common and
specific patches for facial expression. The common patches
were used to recognize all expressions, while the specific
patches were used for only a particular expression. Happy
and Routray [26] selected 19 patches around eyes, nose,
and mouth for facial expression recognition, and LBP fea-
tures were extracted for each patch to train Support Vector
Machines (SVMs). Liu et al. [47] extracted robust deep
salient features from saliency-guided facial patches and fed
features into a novel conditional CNNs enhanced random
forest (CoNERF) to enhance decision trees. Li et al. [27]
extracted 24 regions of interest according to face land-
marks. Each patch is then processed by a Patch-Gated Unit
(PG-Unit). A graph-structured representation was proposed
by Zhong et al. [48]. Each node on the graph represents
appearance information around the facial landmarks and edges
represent the geometric information encoded by the distance
between two nodes.

Some occlusion-robust methods also proposed for FER from
a local perspective. Li et al. [27] proposed Patch-Gated CNN,
which firstly decomposed facial images into several patches
according to facial landmarks, and a patch gated unit with
an attention net was designed to extract the features of each
patch. Li et al. [18] promoted it by adding the whole face area
to patch gated CNN. Wang et al. [20] selected some facial
regions, both from facial landmarks and random cropping.
Then, a self-attention module was employed to process each
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Fig. 2.
the multi-scale module, and the local attention module, respectively.

facial region, and a relation-attention was employed to learn
the weights of individual features.

III. METHODS
A. Overview

As shown in Fig. 1, the proposed MA-Net consists
of three components, including the feature pre-extractor,
the multi-scale module, and the local attention module. The
feature pre-extractor is to acquire middle-level facial features,
and the feature pre-extractor consists of one 2D convolution
layer and four basic blocks. The basic block structure shown
in Fig. 2(a) is a basic building block utilized in ResNet-18 and
ResNet-34 [49]. Then, a two-branch network is designed to
process extracted feature maps, so that both global and local
features can be obtained. In the first branch, we utilize a
multi-scale module to learn global multi-scale features, which
takes whole extracted feature maps as input. In the second
branch, we first divide the extracted feature maps into several
regional feature maps along the spatial axis without overlap,
then, several parallel local attention networks are utilized to
learn local salient features. The extracted multi-scale feature
maps and local attention feature maps are followed by a
global average pooling layer and a fully-connected network
respectively. Finally, a decision-level fusion is utilized to
obtain recognition results.

B. Multi-Scale Module

Multi-scale feature representations of CNNs are critical to
many vision tasks including object detection [50], [51], face
analysis [52]-[55], semantic segmentation [56], [57], and so

(b) Multi-scale Block

(c) Attentive Block

Three types of the block are employed in MA-Net. The basic block, multi-scale block, and attentive block are utilized in the feature pre-extractor,

on. Most of these methods represent the multi-scale features
in a layer-wise manner. Inspired by Res2Net [34], we design
a multi-scale block that can acquire multi-scale features at a
granular level within a single basic block.

Fig. 2(b) shows the structure of the proposed multi-scale
block. As shown in Fig. 2(b), we introduce a symmetrical
structure to learn multi-scale features within a basic block,
such a method can ensure that the feature subset at the
front and back both can contain richer scale information.
Specifically, after the 3 x 3 convolution, the feature maps X
can be obtained. We evenly split the feature maps X along
the channel axis into n feature map subsets denoted by X;,
where i € {1,2,...,n}. Therefore, each feature map subset
X; has the same spatial size but 1/n channels compared
with the feature maps X. Then, each X; is processed by a
corresponding 3 x 3 convolution denoted by Pip (-), where
p € {left,right} denotes the position. Yip denotes the output
of P/ (-). Hence, each output Y/ can be written as:

l .
ylet = Pieft(Xi) i=1 0
i Pileft(Xl_ + Yilijit) l<i<n
oh '
Yright = Plrlg t(Xl) . b=n (2)
i Pirlght (Xi + Yir_:—g]ht) 1<i<n
Then, the final output ¥; can be written as:
Y, = Yl.lef’ + Yiright 3)
From Eq. (1), we can notice that each operation of Pl.lef ! )

can capture features from all subsets {X;, j < i}. And from

right

Eq. (2) we can notice that each operation of P;"°" (-) can
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capture features from all subsets {X;,n > j > i}. During one
operation, a split feature X; is processed by a 33 convolution.
The output Yilef ! have a large receptive field than {Yi, k < i}
and the output Yl.”ght have a large receptive field than
{Yr,k > i}. Hence, each output Y l.p contains subset features
with a different number and different scale. To obtain more
diverse multi-scale features, we concatenate all Yip s along the
channel axis. The larger n potentially allows features to contain
richer scale information, but it may boost computational
overheads. In our work, we set n = 4, which makes a trade-off
between performance and computation.

The multi-scale module consists of four multi-scale blocks
and followed by a global average pooling (GAP) layer. After
GAP, we can obtain a feature vector with a size of 512. To bet-
ter explain the effect of the multi-scale module, we conduct
visualization of the proposed module through class activation
mapping (CAM) [58] to compare the performance of the
multi-scale module with the traditional ResNet. As shown
in Fig. 3, the stronger CAM areas are covered with the lighter
colors.

Due to the multi-scale convolutions considering both
deeper semantic and shallower geometry features, the learned
multi-scale features not only enhances the diversity of global
features but also reduces the susceptibility of the deeper
convolutions towards occlusion and variant pose. Hence,
the networks can obtain a more comprehensive representation
of global features. Compared with the traditional ResNet,
the multi-scale-based CAM results can pay attention to specific
regions which are beneficial to facial expression recognition,
even if there are occlusion and non-frontal pose issues in the
facial images.

C. Local Attention Module

For occlusion and pose variation conditions of FER in
the wild, it is crucial to pay attention to local features.
To acquire effective local features, previous methods mainly
divide the face into several patches by facial landmarks or
random cropping. These methods may result in misalignment
or uncertainty to FER in the wild. While in our method,
the mid-level feature maps are divided into several local
feature maps without overlap, and each network for local
feature maps is expected that can focus on local salient features

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

The comparison of class activation mapping (CAM) between the multi-scale module and traditional ResNet. The images are from the test set of the

autonomously by attention mechanism. Therefore, after the
pre-extraction module, we divide the extracted feature maps
S into several local feature maps S; along the spatial axis,
where i € {1,2,...,m}. We consider that dividing the feature
maps into four local feature maps conforms to the facial region
related to expression. Hence, we set m = 4, and an ablative
study in Sec. IV. C. also demonstrates that using four feature
patches achieves the best accuracy. As a result, each local
feature map S; has the same channels but 1/2 spatial size
compared with the original feature map S.

Specifically, after the pre-extractor module, the feature map
is § € RZx28x128  \here 28 is the spatial size, and 128 is
the channel size. Then, the extracted feature map is divided
into 4 regional feature maps S; € R!**14*128 without overlap,
where i € {1, 2, 3, 4}.

Fig. 2(c) shows the structure of the proposed attentive
block. After two 3 x 3 convolution, we can obtain feature
maps denoted by F € RY*WXC_ Then, a convolutional
block attention module (CBAM) [59] is employed as our
attention net. The CBAM can sequentially infers attention
maps along two separate dimensions, channel and spatial, then
the attention maps are multiplied to the input feature map
for adaptive feature refinement. Moreover, the CBAM is a
lightweight and general module, it can be integrated into any
CNN architectures seamlessly with negligible overheads.

In our network, the attention net takes F as input and infers
a 1D channel attention map M, € R'1*C and a 2D spatial
attention map My € RA*WXI Therefore, the attention net can
be formulated as:

F,=My(F)® (M.(F)® F) “4)

where ® denotes element-wise multiplication. Because the
attention map and feature map have different dimension sizes,
the channel attention values are broadcasted along the spatial
dimension, and the spatial attention values are broadcasted
along the channel dimension when conduct multiplication. F;
is the final refined output.

The local attention module consists of four parallel local
attention networks and each of which consists of four attentive
blocks. The local attention module takes four local 14 x 14 x
128 feature maps as the input, and each local 14 x 14 x 128
feature maps are fed into a corresponding local attention
network. With the local attention module, we can obtain four
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The class activation mapping (CAM) of the traditional ResNet, local feature module (the local feature module can be created by removing the

attention net from the local attention module), and local attention module. The images are from the test set of the FED-RO and Pose-AffectNet datasets.
LF denotes the local feature module, and LA denotes the local attention module.

local 7 x 7 x 512 feature maps. The four local feature maps are
then concatenated along the spatial axis, and the GAP layer
is applied on the concatenated 14 x 14 x 512 feature maps to
obtain a feature vector with a size of 512.

Analogously, to better explain the effect of the local
attention module, we also conduct visualization of CAM
to validate the performance of the local attention module
as well as the attention mechanism. As shown in Fig. 4,
the images in the second and third rows are visualization con-
sequences of local feature module and local attention module
respectively. Compared with the traditional ResNet, the local-
attention-based CAM results can guide the network to focus
on the local salient regions which are crucial to enhance the
robustness towards occlusion and non-frontal facial expression
conditions. For example, the first four images are occluded
faces, and the module can only focus on the non-occlusion
regions, which is consistent with human perception. The last
four images are non-frontal faces, and the local attention
module is capable of focusing on the local salient regions.
Compared with the local feature module, the attention-based
method can enhance the significance of the local features and
concentrate on the action units.

D. Fusion Strategy and Loss Function

Feature-level fusion and decision-level fusion are two con-
ventional methods [60]. The former directly combines the
feature vectors of two branches into a joint feature vec-
tor and trains a classifier for FER [61]; while the latter
combines recognition results from two branches. In our
MA-Net, the extracted multi-scale features and local attention
features have weak complementarity in the feature level.
Therefore, the decision-level fusion strategy is employed in our
research.

After the two GAP layers, we can obtain two feature
vectors with a size of 512 which are donated by »®), where
k € {local, global} denotes branch. The loss function in our
method is consist of two cross-entropy loss which can be

formulated as:

PR A 5
k=—= og———

N Py CZ—:1 eW;k)TDi(k)_"b;k)

j=0
where N is the number of samples; C is the number of
expression categories; W) is the weight matrix of the FC
layer; bp® is the bias term of the FC layer; vl.(k) is the FC
input of the ith sample, and y; is its class label.
Then, the final loss function is defined as:

L= /Lclocal + (1 - /I)Lglobal (6)

where 4 is a hyper-parameters to balance two parts.

IV. EXPERIMENTS
A. Datasets

We conduct the experiments on four popular in-the-wild
facial expression datasets: CAER-S [14], RAF-DB [15],
AffectNet [16], and SFEW [17], and five realistic
occlusion and pose variation test sets: FED-RO [18],
Occlusion-AffectNet, Occlusion-RAF-DB, Pose-AffectNet
and Pose-RAF-DB.

1) CAER-S: The CAER-S [14] dataset was created
by selecting static frames from the CAER dataset with
65,983 images and has been divided into two sets: training set
(44,996 samples) and test set (20,987 samples). Each image is
assigned to one of seven expressions, i.e., neutral, happiness,
sadness, surprise, fear, disgust, and anger.

2) RAF-DB: The RAF-DB [15] dataset contains
30,000 facial images annotated with basic or compound
expressions by 40 trained human coders. In our experiment,
only images with basic emotions are used, including
12,271 images as training data and 3,068 images as test data.

3) AffectNet: The AffectNet [16] dataset is the largest
dataset so far, and it provides both categorical and
Valence-Arousal annotations. The dataset contains more than
one million images collected from the Internet by querying
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expression-related keywords in three search engines, in which
450,000 images are manually annotated with 11 expression
categories. In our experiments, we recognize both seven and
eight expression categories. The seven expression categories
contain six basic expressions and neutral faces, while the
eight expression categories with the addition of contempt
expression. We select 283,901 images as training data and
3,500 images as test data when recognizing seven expression
categories on AffectNet. The experimental setting is the same
as IPA2LT [62], IPFR [31], and gACNN [18]. While recogniz-
ing eight expression categories, we select 287,568 images as
training data and 4,000 images as test data. The experimental
setting is the same as RAN [20], ESR-9 [42], and SCN [63].

4) SFEW: The SFEW [17] dataset is created by select-
ing static frames from the AFEW dataset after computing
key-frames based on facial point clustering. The dataset covers
unconstrained facial expressions, varied head poses, large age
range, occlusion, varied focus, different resolution of the face,
and real-world illumination. The most commonly used version
is SFEW 2.0. It has been divided into three sets: training
set (958 samples), validation set (436 samples), and the test
set (372 samples). Each image is assigned to one of seven
expression categories as CAER-S. Due to the annotations of
the test set are not released, we mainly report our performance
on the validation set.

5) FED-RO: To address the occlusion problem, Li et al.
[18] collected and annotated a facial expression dataset with
real occlusion (FED-RO) in the wild. They collected this
dataset by mining Bing & Google search engine for occluded
images. Each image was carefully labelled by three people.
To ensure the images in FEO-RO are not included in RAF-DB
or AffectNet dataset, they filtered out repeated facial images.
FED-RO contains 400 images in total, and the images were
categorized into seven basic expressions.

6) Occlusion-AffectNet & Occlusion-RAF-DB: To exam-
ine the performance of the FER model under real-world
occlusion condition, Wang et al. [20] built two subsets,
Occlusion-AffectNet and Occlusion-RAF-DB, from the val-
idation set of AffectNet and the test set of RAF-DB respec-
tively. These test sets are annotated with different occlusion
types, and the Occlusion-AffectNet and Occlusion-RAF-DB
contain 683 and 735 images in total respectively.

7) Pose-AffectNet & Pose-RAF-DB: To examine the per-
formance of the FER model under variant pose condition,
Wang et al. [20] also built two subsets, Pose-AffectNet and
Pose-RAF-DB, from the validation set of AffectNet and the
test set of RAF-DB respectively. The pitch or yaw angle of
faces on Pose-AffectNet and Pose-RAF-DB are all larger than
30°. The Pose-AffectNet contains 1,948 and 985 faces with
an angle larger than 30° and 45° respectively in total, and
the Pose-RAF-DB contains 1,248 and 558 faces with an angle
larger than 30° and 45° respectively in total.

B. Implementation Details

For all the datasets, face images are detected and aligned
using Retinaface [64] and then cropped and resized to 224 x
224 pixels. Random cropping and random horizontal flipping
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are employed to avoid over-fitting. The ResNet-18 [49] is
employed as a backbone CNN. Our method is implemented
with Pytorch toolbox [65] on one GeForce RTX 2080 Ti
platform, using the SGD optimizer with a momentum of 0.9.
The number of Parameters and FLOPs of our MA-Net is
50.54 M and 3.65 G, respectively.

For the RAF-DB and the AffectNet datasets, consistent
with RAN [20] and SCN [63], we pre-train our MA-Net on
MS-Celeb-1M [66] face recognition dataset and then fine-tune
it on RAF-DB and AffectNet with spending of 1.0 and
4.5 hours approximately. For the SFEW dataset, consistent
with Island Loss [43] and IPFR [31], we pre-train our MA-Net
on the FER2013 [67] dataset and then fine-tune it on SFEW
with a spending of 40 minutes approximately. For the CAER-S
dataset proposed recently, we train our MA-Net from scratch
with a batch size of 128, initializing the learning rate as
0.1 and dividing it by two every 50 epochs. The training
operation is stopped in the 400th epoch and spends 14.0 hours
approximately. For the Occlusion-AffectNet, the Occlusion-
RAF-DB, the Pose-AffectNet, and the Pose-RAF-DB test set,
we train our MA-Net using the same setting as RAN [20].
In the inference phase, our MA-Net achieves a recognition
time of 0.0489 s for a single facial image, which runs at
20.45 FPS.

C. Ablation Analysis

To validate the effectiveness of each component in our
MA-Net, we conduct an ablation analysis on two benchmarks
(CAER-S and RAF-DB) and two occlusion and pose variation
test sets (FED-RO and Pose-AffectNet). In our experiments,
the multi-scale module, local attention module, fusion strategy,
and value of weight A are studied respectively, in which the
two modules are implemented both in the one-branch and
two-branch networks.

1) Multi-Scale Module: We first conduct the experiments to
validate the effectiveness of the multi-scale module. Specifi-
cally, for the one-branch network, we replace the basic block
of the ResNet-18 with the multi-scale block of the Res2Net
and ours symmetrical multi-scale block respectively, and for
the two-branch network, we replace one of the branches of
the two-branch baseline with the proposed multi-scale module.
The one-branch baseline network is the ResNet-18, and
the two-branch baseline network is the modified ResNet-18,
in which each branch consists of the last two convolution
stages of ResNet-18.

The results of the proposed symmetrical multi-scale block
in one-branch and two-branch networks are shown in Tab. I
and Tab. II, respectively. The results indicate that the perfor-
mance of the symmetrical multi-scale block is better than the
multi-scale block of the Res2Net. The proposed symmetrical
multi-scale module used in the one-branch network improves
the recognition rate by 1.60%, 1.15%, 2.75%, 2.26%, and
2.54% on CAER-S, RAF-DB, FED-RO, Pose-AffectNet (30°),
and Pose-AffectNet (45°), respectively. On the two-branch
network, the symmetrical multi-scale module improves the
recognition rate by 0.45%, 1.08%, 2.25%, 0.56%, and 0.61%
on CAER-S, RAF-DB, FED-RO, Pose-AffectNet (30°), and
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TABLE I
EVALUATION OF EACH COMPONENT IN ONE-BRANCH NETWORK ON CAER-S, RAF-DB, FED-RO, AND POSE-AFFECTNET WITHOUT PRE-TRAINING

Methods \ CAER-S RAF-DB FED-RO Pose-AffectNet (> 30°)  Pose-AffectNet (> 45°)
Baseline (One Branch) 84.41 82.59 60.00 53.55 52.39
Baseline + Multi-scale 85.50 82.89 62.00 54.22 53.61
Baseline + Symmetrical Multi-scale 86.01 83.74 62.75 55.81 54.93
Baseline + Local Feature 86.12 83.87 62.00 54.68 54.02
Baseline + Local Feature + Attention 86.32 84.65 63.25 55.30 54.73
TABLE II — 1 o =
EVALUATION OF EACH COMPONENT IN OUR MA-NET ON CAER-S, 28 i i 207 ' g1 ’
RAF-DB, FED-RO, AND  POSE-AFFECTNET  WITHOUT Z ’ é 9
PRE-TRAINING. THE LTS, MS, AND LA DENOTE THE LAST TWO 7 7 ’
CONVOLUTION STAGES OF RESNET-18, THE MULTI-SCALE ' Y % ’
MODULE, AND THE LOCAL ATTENTION
MODULE, RESPECTIVELY (@) 1x1 (b) 2 x2 (©)3x3
Fig. 5. Three types of local feature selection strategy. The strategy of
Datasets ‘ LIS LIS MS LA  Acc(%) sub-figure (a) means that takes whole feature maps as an input, which can be
i i 87.23 denoted by 1 x 1. The strategy of sub-figure (b) means that divide the whole
Vv Vv 87.68 feature maps into 4 local regions without overlap or with an overlap of 6,
CAER-S Vv Vv 87.98 which can be denoted by 2 x 2. The strategy of sub-figure (c) means that
Vv Vv 88.42 divide the whole feature maps into 9 local regions with an overlap of 1 or 7,
7 7 23,05 which can be denoted by 3 x 3.
v v 84.13
RAF-DB Vi V8543 TABLE III
v v 86.34 EVALUATION OF DIFFERENT REGION SELECTION STRATEGIES ON
vV Vv 61.50 THE RAF-DB DATASET WITHOUT PRE-TRAINING
FED-RO v v 63.75
v v \\? 228(5) Selection Strategies ~ # Regions  Acc.(%)
1 x 1 (overlap = 0) 1 84.58
Y 53.86 2 x 2 (overlap = 0) 4 86.32
Pose—AffegtNet Vv v 54.42 2% 2 ( overlag = 6) 4 85.14
(= 30°) v v 56.17 3 x 3 (overlap = 1) 9 85.41
vV 5648 3 x 3 (overlap = 7) 9 85.29
Vv v 52.90
Pose-AffectNet Vv v 53.51
(= 45°) 4 v 54.83 TABLE IV
v v 55.95 EVALUATION OF DIFFERENT FUSION STRATEGIES ON RAF-DB

Pose-AffectNet (45°), respectively. The results also show that
the multi-scale module can boost the FER performance when
the other branch employs the local attention module.

2) Local Attention Module: We then evaluate the validity
of the local attention module. As shown in Tab. I, for the
one-branch network, the local attention module improves
the accuracy by 1.91%, 2.06%, 3.25%, 1.75%, and 2.34%
on CAER-S, RAF-DB, FED-RO, Pose-AffectNet (30°), and
Pose-AffectNet (45°), respectively. When the attention net
is utilized in the one-branch network, the FER accuracies
show an improvement of 0.20%, 0.78%, 1.25%, 0.62%, and
0.71% on CAER-S, RAF-DB, FED-RO, Pose-AffectNet (30°),
and Pose-AffectNet (45°), respectively. The results shown
in Tab. II indicate that, when the local attention module is
utilized in the two-branch network, the FER accuracies show
an improvement of 0.75%, 2.38%, 0.55%, 2.31%, and 1.93%
on CAER-S, RAF-DB, FED-RO, Pose-AffectNet (30°), and
Pose-AffectNet (45°), respectively.

To explore the impact of the local feature selection strategy
on the local attention module, we evaluate three types of
local feature selection strategy with different overlap presented

DATASET WITHOUT PRE-TRAINING

Fusion Strategies  Acc.(%)
Feature-level 82.76
Decision-level 86.34

in Fig. 5. Corresponding FER accuracy on the RAF-DB dataset
shown in Tab. III. From the results, we can find that the
accuracy of strategy without overlap is better than those with
overlap. Furthermore, the best accuracy of the 3 x 3 strategy
is 85.41%, which is inferior to the 2 x 2 strategy with the best
result of 86.32%. We believe that too small regions lead to
insufficient discrimination ability of local features. Dividing
the feature maps into four local feature maps conforms to the
facial region related to expression. These facial regions mainly
include eyes, eyebrow corners, and lip corners.

3) Fusion Strategy: We also conduct experiment to evaluate
different fusion strategies. As shown in Tab. IV, we compare
two conventional fusion strategies: feature-level and decision-
level. The feature-level fusion directly combines the feature
vectors obtained by the two branches into a joint feature vector
and trains a classifier for FER. While the decision-level fusion
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Fig. 6. Evaluation of different 4 values on RAF-DB dataset.

TABLE V

COMPARISON TO THE STATE-OF-THE-ART RESULTS ON THE CAER-S
DATASET. * THE RESULT IS TRAINED FROM SCRATCH

Methods Years  Acc.(%)
ResNet-18 [49] 2016 84.67
ResNet-50 [49] 2016 84.81
Res2Net-50 [34] 2019 85.35

CAER-Net-S [14] 2019 73.51
MA-Net* (Ours) 2020 88.42

combines recognition results from two branches. The results
in Tab. IV indicate that the decision-level fusion is highly
superior to the feature-level fusion strategies in our MA-Net.
Intuitive cognition is that the extracted multi-scale features
and local attention features have weak complementarity in the
feature level.

4) Weight A: A is a hyper-parameters to balance two parts
of the loss function. To explore the impact of weight 1 for
our MA-Net, we study different values from 0.1 to 0.9. Fig. 6
shows the results on the RAF-DB datasets. The results show
that the best performance can be obtained when 1 = 0.6,
namely, the importance of the local attention branch is slightly
higher than the multi-scale branch. Such a result also keeps
in line with the ablation study result in Tab. I, in which the
performance of the baseline with the local attention module is
slightly better than the baseline with the multi-scale module.

D. Comparison With State-of-the-Art Methods

In this section, we compare our best results to several
state-of-the-art methods on CAER-S, AffectNet, RAF-DB and
SFEW datasets.

1) Comparison on CAER-S: The FER accuracy on CAER-S
achieved by MA-Net and its comparison with some state-of-
the-art methods are shown in Tab. V. Due to the CAER-S
dataset was proposed recently, and only [14] evaluated their
method on it, we conduct several experiments utilizing some
state-of-the-art networks on it, such as ResNet-18, ResNet-50,
and Res2Net-50. The results in Tab. V demonstrate that our
MA-Net outperforms state-of-the-art Methods, even though
comparing with deeper networks, such as ResNet-50 and
Res2Net-50. It is worth pointing out that our MA-Net is
trained from scratch while others are pre-trained on ImageNet.
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TABLE VI

COMPARISON TO THE STATE-OF-THE-ART RESULTS ON THE
AFFECTNET DATASET. ¥ OVERSAMPLING IS USED
SINCE AFFECTNET IS IMBALANCED

Methods Backbone Years # Classes Acc.(%)
IPA2LT [62] ResNet-80 2018 7 57.31
gACNN [18] VGG-16 2019 7 58.78

IPFR [31] Manually-Designed 2019 7 57.40

Separate Loss [19] ResNet-18 2019 7 58.89
FMPN [£] Inception-V3 2019 7 61.52
VGG-FACE [68] VGG-Face 2020 7 60.00
SNA-DFER [69] Manually-Designed 2020 7 62.70
LDL-ALSG [70] ResNet-50 2020 7 59.35
MA-Nett (Ours) ResNet-18 2020 7 64.53
MobileNet-Variant [71] Manually-Designed 2018 8 56.00
VGGNet-Variant [71] Manually-Designed 2018 8 58.00
Weighted-Loss [16] AlexNet 2019 8 58.00
RANT [20] ResNet-18 2020 8 59.50
ESR-9 [42] Manually-Designed 2020 8 59.30
SCNT [63] ResNet-18 2020 8 60.23
MA-Net™ (Ours) ResNet-18 2020 8 60.29

Fig. 7. Facial images with the annotation of contempt were selected from
the validation set of the AffectNet dataset.

2) Comparison on AffectNet: Different from other datasets,
the AffectNet dataset is manually annotated with 11 expression
categories, previous work recognize both 7 expression cate-
gories and 8 expression categories. To prove the effectiveness
of our MA-Net sufficiently, we conduct experiments and
compare with other state-of-the-art methods by classifying
both 7 expression categories and 8 expression categories. Due
to the AffectNet dataset has an imbalanced training set but a
balanced validation set, we employ an oversampling strategy,'
which is consistent with RAN [20] and SCN [63]. As shown
in Tab. VI, we obtain 64.53% in term of FER accuracy
on AffectNet with 7 expression categories, which is greatly
superior to the state-of-the-art methods. We also obtain the
highest accuracy of 60.29% on AffectNet with 8 expression
categories.

In addition, our MA-Net is slightly superior to SCN [63]
which achieves the result of 60.23%, while our MA-Net is sig-
nificantly superior to other state-of-the-art methods. Moreover,
the results of our MA-Net display a large gap between
7 expression categories and 8 expression categories, and the
8 expression categories added expression of contempt based
on 7 expression categories. To this end, we randomly select
some images from the AffectNet dataset with an annotation
of contempt shown in Fig. 7. The randomly selected images

1 https://github.com/ufoym/imbalanced-dataset-sampler
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(b) Pose-AffectNet

Some examples of occlusion and pose variation test datasets. The images of sub-figure (a) are from FER-RO dataset, which exist severe occlusion,

the images of sub-figure (b) are from the test set of AffectNet, which exist severe pose variation.

TABLE VII

COMPARISON TO THE STATE-OF-THE-ART RESULTS ON THE RAF-DB
DATASET. * THE RESULT ARE TRAINED FROM SCRATCH. | RAF-DB
AND AFFECTNET ARE JOINTLY USED FOR TRAINING

Methods Backbone Years  Acc. (%)
DLP-CNN [15] 8-layer DCNN 2017 84.22
IPA2LT [62] ResNet-80 2018 86.77
Separate Loss [19] ResNet-18 2019 86.38
gACNN [18] VGG-16 2019 85.07
RAN [20] ResNet-18 2020 86.90
LDL-ALSG [70] ResNet-50 2020 85.53
SCN* [63] ResNet-18 2020 78.31
SCN [63] ResNet-18 2020 87.03
SCNT [63] ResNet-18 2020 88.14
MA-Net* (Ours) ResNet-18 2020 86.32
MA-Net (Ours) ResNet-18 2020 88.40

indict that category of contempt exist in many error anno-
tations, which impact model performance severely. And the
method of SCN [63] is to address such a problem. Although
our MA-Net did not address this problem, primarily, we can
obtain the best result from it.

3) Comparison on RAF-DB: The comparison with
state-of-the-art methods on RAF-DB is presented in Tab. VII.
RAF-DB dataset has basic emotion categories and compound
categories. Consistent with other methods, we evaluate
the effectiveness of MA-Net by recognizing basic emotion
categories. The results presented in Tab. VII demonstrate
that our MA-Net obtains the highest accuracy of 88.40%
on RAF-DB. Even though without pre-training, MA-Net
is superior to some state-of-the-art methods with pre-
training. It is worth noting that RAN [20] obtain a fantastic
performance on RAF-DB by training both on RAF-DB and
AffectNet. However, our MA-Net is trained on RAF-DB only,
but it is still superior to RAN [20].

4) Comparison on SFEW: The recognition accuracy of
MA-Net and its comparison with state-of-the-art methods
on SFEW are shown in Tab. VIII. In view of the quantity
of training set on SFEW is tiny, similar to some state-of-
the-art methods, we first pre-train our MA-Net on FER-

TABLE VIII

COMPARISON TO THE STATE-OF-THE-ART RESULTS
ON THE SFEW DATASET

Methods Pre-trained Dataset Years Acc. (%)
ADML [72] FER-2013 2017 54.20
IACNN [73] FER-2013 2017 54.30

DCD [74] FER-2013 2018 49.18

Island Loss [43] FER-2013 2018 52.52
Covariance Pooling [75] MS-Celeb-1M 2018 58.14
IPFR [31] FER-2013 2019 55.10

RAN (ResNet18) [20] MS-Celeb-1M 2020 54.19
RAN(ResNet18+VGG16) [20] MS-Celeb-1M 2020 56.40
LDL-ALSG [70] AffectNet+RAFDB 2020 56.50
MA-Net (Ours) FER-2013 2020 59.40

2013 dataset and then fine-tune our model on SFEW. The
results in Tab. VIII demonstrate that MA-Net achieves 59.40%
FER accuracy, which significantly outperforms state-of-the-art
methods.

E. Experiments on Realistic Occlusion and Pose Variation

To evaluate our method under the real-world scenario,
we conduct several experiments on datasets with realistic
occlusion and pose variation.

1) Evaluation of Realistic Occlusion: To evaluate our
method under the occlusion condition, we conduct sev-
eral experiments on FED-RO, Occlusion-AffectNet, and
Occlusion-RAF-DB test set, and the experiment setting is the
same as previous work. Fig. 8(a) shows some examples in
FED-RO. The comparison with state-of-the-art methods on
FED-RO is shown in Tab. IX. Our MA-Net obtains 70.00%
accuracy on FED-RO, which is significantly superior to state-
of-the-art methods. The comparison with state-of-the-art meth-
ods on Occlusion-AffectNet and Occlusion-RAF-DB is shown
in Tab. X. We finally achieve the results of 59.59% and 83.65%
on two test sets, which is better than 58.50% and 82.72% of
RAN [20] respectively. The results on realistic occlusion facial
expression datasets demonstrate that our MA-Net has fantastic
robustness towards occlusion conditions.
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TABLE IX

COMPARISON TO THE STATE-OF-THE-ART RESULTS
ON THE FED-RO DATASET

Methods Years  Acc.(%)
VGG-16 [18] 2015 60.15
RseNet-18 [18] 2016 64.25
gACNN [18] 2019 66.50
RAN [20] 2020 67.98
MA-Net (Ours) 2020 70.00
TABLE X

COMPARISON TO THE STATE-OF-THE-ART RESULTS ON THE
OCCLUSION-AFFECTNET & OCCLUSION-RAF-DB DATASETS

Datasets | Methods Acc.(%)
ResNet-18 [20] 49.48
Occlusion-AffectNet RAN [20] 58.50
MA-Net (Ours) 59.59
ResNet-18 [20] 80.19
Occlusion-RAF-DB RAN [20] 82.72
MA-Net (Ours) 83.65

TABLE XI

COMPARISON TO THE STATE-OF-THE-ART RESULTS ON THE
POSE-AFFECTNET & POSE-RAF-DB DATASETS

Datasets \ Methods Pose (> 30°)  Pose (= 45°)
ResNet-18 [20] 50.10 48.50
Pose-AffectNet RAN [20] 53.90 53.19
MA-Net (Ours) 57.51 57.78
ResNet-18 [20] 84.04 83.15
Pose-RAF-DB RAN [20] 86.74 85.20
MA-Net (Ours) 87.89 87.99

2) Evaluation of Realistic Pose Variation: To evaluate our
MA-Net under realistic pose variation condition, we conduct
experiments on Pose-AffectNet and Pose-RAF-DB. Fig. 8(b)
shows some examples in Pose-AffectNet. The comparison
with the state-of-the-art method is shown in Tab. XI, which
demonstrates that our MA-Net is significantly superior to
RAN [20] on both two test sets. Particularly, comparing the
performance between angle larger than 30° and 45°, our
MA-Net achieves a tiny reduction of accuracy, indicating that
our MA-Net has fantastic robustness to pose variation.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a global multi-scale and
local attention network (MA-Net) to address occlusion and
non-frontal pose problems for FER in the wild. The proposed
MA-Net is capable of acquiring robust both global and local
features, which can address the issues both of occlusion
and pose variation well. Specifically, the multi-scale module
is employed to fuse features with different receptive fields,
which reduces the susceptibility of deeper convolution towards
occlusion and variant pose. The local attention module can
guide the network to focus on local salient features, which
relieves the interference of occlusion and non-frontal pose
situations. To verify the effectiveness of the proposed MA-Net
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Fig. 9. The failure cases and its class activation mapping (CAM). The images
on top are raw data, the CAMs on the middle and the bottom are generated
by multi-scale module and local attention module, respectively.

under occlusion and pose variation conditions, we carry out
experiments on the realistic occlusion and pose variation
datasets. The results demonstrate that the proposed MA-Net
has strong robustness and outperforms the existing state-of-
the-art methods. Moreover, we compare MA-Net with other
state-of-the-art methods on some popular datasets, includ-
ing CAER-S, AffectNet, RAFDB, and SFEW, and MA-Net
achieves the best performance on each mentioned datasets.

However, the proposed MA-Net will fail in some specific
cases. Examples shown in Fig. 9 indicate that the blur is the
main problem. For facial emotional images, the blurred images
will entail ambiguity of the expression, which usually leads to
inconsistent and incorrect labels called noise problems. In our
future work, we will attempt to handle the noise problems that
exist in facial expression recognition.
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