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ABSTRACT

This paper proposes a dynamic facial expression recognition trans-

former (Former-DFER) for the in-the-wild scenario. Specifically, the

proposed Former-DFER mainly consists of a convolutional spatial

transformer (CS-Former) and a temporal transformer (T-Former).

The CS-Former consists of five convolution blocks and N spatial

encoders, which is designed to guide the network to learn occlusion-

and pose-robust facial features from the spatial perspective. And

the temporal transformer consists of M temporal encoders, which

is designed to allow the network to learn contextual facial features

from the temporal perspective. The heatmaps of the leaned facial

features demonstrate that the proposed Former-DFER is capable of

handling the issues such as occlusion, non-frontal pose, and head

motion. And the visualization of the feature distribution shows

that the proposed method can learn more discriminative facial fea-

tures. Moreover, our Former-DFER also achieves state-of-the-art

results on the DFEW and AFEW benchmarks. Code is available at

https://github.com/zengqunzhao/Former-DFER.

CCS CONCEPTS

• Computing methodologies→ Activity recognition and un-

derstanding; Biometrics.
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1 INTRODUCTION

Facial expression is one of the most crucial signals for human be-

ings to convey their emotions, which plays a significant role in
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Figure 1: Three kinds of challenges, including occlusion

(top), non-frontal pose (middle), and head motion (bottom),

to DFER under the in-the-wild scenario. The sequences are

sampled from the DFEW dataset.

communications [13]. In recent years, automatic recognition of

facial expression has become a hot topic for researchers because of

its applications in various fields, such as the human-computer in-

teraction (HCI) [8, 19], medical diagnosis [29, 39], driver assistance

[69], and so on [2, 27]. Facial expression recognition (FER) aims to

classify an image or video sequence into one of several basic emo-

tions, i.e., neutral, happiness, sadness, surprise, fear, disgust, and

anger. According to the data type, the FER can be divided into static

FER (SFER) and dynamic FER (DFER), in which the SFER takes the

still image as an input and the DFER takes the video sequence as

an input. Previous work [44, 71, 72] has indicated that the natural

facial event is dynamic and facial expression can be better described

as the sequential variation in a dynamic process. Therefore, the

DFER has received more and more attention in recent years.

According to the data scenario, the DFER can be also divided into

lab-controlled and in-the-wild. Towards lab-controlled DFER, the

datasets, such as CK+ [48], Oulu-CASIA [76], and MMI [53] are all

recorded under laboratory conditions, in which all the facial images

are frontal and without any occlusion. Over the past decade, there

are manymethods proposed for DFER under lab-controlled datasets,

and these methods have achieved outstanding performance [65,

67, 73]. Towards in-the-wild DFER, as shown in Fig. 1, the video

sequences come from the real-world scenario, which exists many

challenges such as occlusion, non-frontal pose, and head motion.

Due to the scenario gap between laboratory and real-world, the

DFER models, designed based on the lab-collected datasets, cannot

deal well with human expressions recognition under natural and

uncontrolled conditions [42, 77, 78]. Moreover, with the collection

of the large-scale facial expression datasets in the wild, such as
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AFEW [17], Aff-Wild [74], CAER [36], and DFEW [30], the research

focus of the DFER has been transferred from laboratory-controlled

to challenging in-the-wild conditions [30].

For DFER in the wild, the early work is mainly proposed based

on the hand-crafted features, such as the LBP-TOP [16], STLMBP

[28], and HOG-TOP [9]. Instead of hand-crafted descriptors, a novel

spatio-temporal manifold (STM) method [44] is proposed for model-

ing each video clip, and Liu et al. [45] also combine multiple kernel

methods on the Riemannianmanifold for DFER in thewild.With the

prevalence of deep learning and collection of large-scale datasets,

deep-learning-based methods have been becoming the dominant

strategy. These methods are proposed based on the convolutional

neural network (CNN) [1, 21, 49], recurrent neural network (RNN)

[20, 38, 47, 52, 66], and 3D CNN [22, 30, 36, 64]. Moreover, ensemble

learning and multi-modal learning are also prevalent in DFER in

the wild [5, 10, 34, 37, 41, 50, 51, 75]. In the latest work, Baddar et

al. [4] propose a mode variational LSTM, Liu et al. [43] introduce

the Graph Convolutional Networks (GCN) into in-the-wild DFER,

Kumar et al. [35] adopt the noisy student training method, and

Jiang et al. [30] propose a novel EC-STFL Loss for DFER in the wild.

Although many methods have been proposed for in-the-wild

DFER, the performance of these models are still weak, hindering the

application of the in-the-wild DFER models for real world [40, 46].

Recently, the success of the transformer [63] models in natural

language processing (NLP) has inspired researchers to employ the

Transformer Encoder in computer vision tasks [32]. As a result,

Transformer models have been successfully used for image recog-

nition [18, 59], object detection [6, 81], image super-resolution [70],

and video understanding [23, 58]. Inspired by it, we propose a dy-

namic facial expression recognition transformer (Former-DFER),

the structure of the proposed method is shown in Fig. 2. From the

spatial perspective, the facial patches split from awhole facial image

can be viewed as a sequence of the visual words. From the temporal

perspective, the facial clip is sequential, and each frame of the clip

can be also viewed as a visual word. Furthermore, the self-attention

mechanism in Transformer can learn correlation among regional

facial features and correlation among temporal facial features, pos-

sessing a natural ability in addressing the occlusion, non-frontal

pose, and head motion problems for DFER in the wild.

As shown in Fig. 2, the proposed Former-DFER mainly consists

of two parts: a convolutional spatial transformer (CS-Former) and

a temporal transformer (T-Former). The CS-Former consists of

five convolution blocks and 𝑁 spatial encoders, which is designed

to guide the network to learn occlusion- and pose-robust facial

features from the spatial perspective. And the T-Former consists of

𝑀 temporal encoders, which is designed to allow the network to

learn contextual facial features from the temporal perspective. The

visualizations show that the proposed Former-DFER has the ability

to handle the challenging issues and can encodemore discriminative

facial representation for recognition. Moreover, the quantitative

results indicate that our Former-DFER has achieved state-of-the-art

performance on two popular benchmarks. The contributions of our

work can be summarized as follows:

• We propose a dynamic facial expression recognition trans-

former for the in-the-wild scenario. A convolutional spatial

transformer and a temporal transformer are designed to

guide the network extracting of robust facial features both

spatial and temporal.

• To the best of our knowledge, we are the first to apply Trans-

formers for dynamic facial expression recognition. The self-

attention enables the network to be capable of learning con-

textual information.

• The heatmaps of the learned facial features indicate that the

proposed method can handle the issues such as occlusion,

non-frontal pose, and head motion. And the visualization

of the feature distribution shows that the proposed method

can learn more discriminative facial features. Moreover, the

proposed method also achieves state-of-the-art results on

two popular benchmarks, and the code is publicly available.

2 RELATEDWORK

2.1 DFER in the Wild

In recent years, deep learning has been successfully adopted to

recognize dynamic emotions in the wild, and these methods have

achieved superior performance to methods of using hand-crafted

features [12]. So we mainly review the deep-learning-based method.

For the CNN-RNN-based methods, the spatial facial features

of each video frame are first learned by a CNN, and then all the

frames’ spatial features are processed by an RNN to learn temporal

information among all frames. Under this paradigm, many methods

[20, 38, 47, 52, 66] adopt the VGG [57] or ResNet [25] to extract

spatial features and Long Short-TermMemory (LSTM) [26] or Gated

Recurrent Unit (GRU) [11] to extract temporal features. In recent

CNN-RNN-based work, Baddar et al. [4] propose a mode variational

LSTM to encode spatio-temporal features robust to unseen modes

of variation. Liu et al. [43] introduce a GCN layer into the common

CNN-RNN-based model for video-based FER. Moreover, a multi-

modal recurrent attention network (MRAN) [37] is also proposed to

learn spatio-temporal attention maps for robust DFER in the wild.

For the 3D-CNN-based methods, the spatial and temporal feature

representation of video sequences is extracted jointly through the

3D convolution. The early work [22, 34, 47, 64, 75] extracts spatial-

temporal facial features by adopting a 3D-CNN directly, and such a

spatial-temporal feature often combines with other kinds of facial

features as a final representation. Recently, Lee et al. [38] propose

a CAER-Net to exploit not only human facial expression but also

context information in a joint and boosting manner. To reduce the

overheads of the 3D networks in DFER, Kossaifi et al. [33] propose

a CP-Higher-Order Convolution that allowing to train of a network

on the images and using transduction to generalize to videos. The

last work proposes a EC-STFL [30] for DFER, which can enforce the

spatio-temporal deep neural networks to better learn discriminative

features describing dynamic facial expressions in the wild.

2.2 Transformer

The Transformer is proposed by Vaswani et al. [63] for machine

translation and has achieved the state of the art performance in

many NLP tasks. The prevalence of the transformer networks in

the NLP domain has sparked great interest in the computer vision

community to adapt these models for vision learning tasks [32].

Regarding the image classification, Dosovitskiy et al. [18] propose a

Vision Transformer (ViT) to treat an image as a sequence of patches
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Figure 2: The structure of the proposed method.

and process it by a standard Transformer encoder as used in NLP,

which indicates that Transformer has the ability in handling the vi-

sion classification task. Regarding object detection, the new models

named DETR [6] and deformable DETR [81] are proposed to reason

about the relations of the objects and the global image context to

directly output the final set of predictions in parallel, which show

a superior performance to other modern detectors. Regarding the

image super-resolution, Yang et al. [70] propose a novel texture

Transformer network for image super-Resolution, in which the

low-resolution image and high-resolution images are formulated as

queries and keys in a transformer. Moreover, the Transformer-based

methods are also proposed for video understanding [23, 58].

3 THE FORMER-DFER MODEL

3.1 Overview

As shown in Fig. 2, the proposed Former-DFER mainly consists of

a convolutional spatial transformer (CS-Former) and a temporal

transformer (T-Former). For our Former-DFER, the fixed-length

facial expression sequence is dynamically sampled from the raw

video as an input. The CS-Former takes each frame as an input to

extract spatial facial features, and then the T-Former takes all the

frame’s spatial features as an input to generate a discriminative

feature representation. Finally, the recognition result is obtained

by a full-connected (FC) network.

3.2 CS-Former

The convolutional spatial transformer (CS-Former) consists of five

convolution blocks and𝑁 spatial encoders, and each spatial encoder

consists of a multi-headed self-attention and feed forward network.

The structure is shown in Fig. 2.

Input Clips: The CS-Former takes a clip 𝑋 ∈ R𝑇×3×𝐻×𝑊 con-

sisting of 𝑇 RGB frames of the size of 𝐻 ×𝑊 as an input, and the

clip is dynamically sampled from the original video. Specifically,

we first split all frames into 𝑈 segments regarding the training

video samples and then select 𝑉 frames in each segment randomly.

Regarding the test video samples, we first split all frames into 𝑈
segments and then selecting 𝑉 frames in the mid of each segment.

Hence, the length of the sampled clip is 𝑇 = 𝑈 ×𝑉 .

Convolutional Embedding: For each frame, we first utilize four

convolution blocks to extract feature maps 𝑀 ∈ R𝐶×𝐻 ′×𝑊 ′
. The

acquired feature maps need to be flattened into a 1D sequence, and

further can be fed for the S-Former (consists of 𝑁 spatial encoders).

Therefore, we then reshape𝑀 ∈ R𝐶×𝐻 ′×𝑊 ′
into a flatted sequence

𝑀 𝑓 ∈ R𝑄×𝐶 (𝑄 = 𝐻 ′𝑊 ′). As a result, we can obtain 𝑄 visual word

embeddings with the length of 𝐶 , and each visual word embedding

represents the features of the original facial patch with the size

of 𝐻/𝐻 ′ ×𝑊 /𝑊 ′. Then the input embedding to S-Former can be

computed as:

z0𝑝 = m
𝑓
𝑝 + e𝑝 (1)

where e𝑝 ∈ R𝐶 represents a learnable position embedding added

to encode the spatial position, 𝑝 ∈ {1, 2, · · · , 𝑄}.
Query-Key-Value Computation: Our S-Former consists of 𝑁

spatial encoders. At each encoder 𝑙 , the query/key/value vector

is computed for each visual world from the representation z𝑙−1𝑝
encoded by the preceding block, which can be computed as:

q
(𝑙,𝑘)
𝑝 =𝑊

(𝑙,𝑘)
𝑄 𝐿𝑁 (z𝑙−1𝑝 ) ∈ R𝐶′

k
(𝑙,𝑘)
𝑝 =𝑊

(𝑙,𝑘)
𝐾 𝐿𝑁 (z𝑙−1𝑝 ) ∈ R𝐶′

v
(𝑙,𝑘)
𝑝 =𝑊

(𝑙,𝑘)
𝑉 𝐿𝑁 (z𝑙−1𝑝 ) ∈ R𝐶′

(2)

where 𝐿𝑁 (·) denotes layer normalization [3], 𝑘 ∈ {1, · · · , 𝐾} rep-
resents the index of the multiple attention heads and 𝐾 denotes

the total number of attention heads, 𝐶 ′ = 𝐶/𝐾 denotes the latent

dimensionality of each attention head.
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Self-attentionComputation: The self-attentionweights𝝀 (𝑙,𝑘)
𝑝 ∈

R
𝑄 for each query 𝑝 are computed by dot-production, which can

be formulated as:

𝝀 (𝑙,𝑘)
𝑝 = 𝑆𝑀 (

q
(𝑙,𝑘)
𝑝√
𝐶 ′

ᵀ

· {k(𝑙,𝑘)
𝑝′ }𝑝′=1, · · · ,𝑄 ) (3)

where SM denotes the softmax activation function.

Encoding: To compute the encoding z
(𝑙,𝑘)
𝑝 at block 𝑙 , we can first

compute the weighted sum of value vectors by using self-attention

coefficients from each attention head, which can be formulated as:

s
(𝑙,𝑘)
𝑝 =

𝑄∑
𝑝′=1

𝝀 (𝑙,𝑘)
𝑝,𝑝′ v

(𝑙,𝑘)
𝑝′ (4)

Then, the concatenation of the vectors from all attention heads

is projected and passed through an MLP, in which the residual

connections are employed. The operation can be formulated as:

z′𝑙𝑝 =𝑊𝑂

⎡⎢⎢⎢⎢⎢⎢⎣

s
(𝑙,1)
𝑝
...

s
(𝑙,𝐾)
𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
+ z𝑙−1𝑝 (5)

z𝑙𝑝 = 𝑀𝐿𝑃 (𝐿𝑁 (z′𝑙𝑝 )) + z′𝑙𝑝 (6)

Finally, the 𝑄 encodings z𝑁𝑝 are concatenated at the spatial level

to generate refined feature maps𝑀𝑟 ∈ R𝐶×𝐻 ′×𝑊 ′
. And each frame’s

feature embedding x′𝑡 ∈ R𝐹 can be computed as:

x′𝑡 = 𝐺𝐴𝑃 (𝑔(𝑀𝑟 )) (7)

where 𝑔(·) denotes convolution block, GAP denotes global average

pooling, 𝑡 ∈ {1, 2, · · · ,𝑇 }.
Because all the frames are sharing one CS-Former, given an

input clip 𝑋 ∈ R𝑇×3×𝐻×𝑊 , the output 𝑋 ′ ∈ R𝑇×𝐹 can be obtained

through a CS-Former. Regarding the proposed ST-Former, the first

four convolution blocks are employed to learn facial features within

a kernel which can be treated as a local operation, and the S-Former

is employed to learn the correlation among all the kernels which

can be treated as a global operation. The final convolution block is

employed to refine the facial features.

3.3 T-Former

The temporal transformer (T-Former) consists of 𝑀 temporal en-

coders, and each temporal encoder also consists of a multi-headed

self-attention and feed forward network. The structure is shown in

Fig. 2.

Embedding: Given an input 𝑋 ′ ∈ R𝑇×𝐹 , the 𝑇 spatial feature

vectors can be obtained. Then, the input embeddings for T-Former

can be computed as:

z0𝑡 ′ = x′𝑡 ′ + e𝑡 ′ (8)

where e𝑡 ′ ∈ R𝐹 represents a learnable position embedding added

to encode the temporal position, 𝑡 ′ ∈ {0, 1, · · · ,𝑇 }. Different from
the S-Former, we add a special learnable vector x′0 ∈ R𝐹 in the

first position of the sequence to represent the embedding of the

classification token (class token).

Query-Key-ValueComputation: For T-Former, the queryq
(𝑙,𝑘)
𝑡 ′ ,

key k
(𝑙,𝑘)
𝑡 ′ , and value v

(𝑙,𝑘)
𝑡 ′ ∈ R𝐹 ′

at each layer 𝑙 can be computed

using Equ. 2, where 𝐹 ′ = 𝐹/𝐾 .

Self-attentionComputation: The self-attentionweight 𝝁 (𝑙,𝑘)
𝑡 ′ ∈

R
𝑇 for each query 𝑡 ′ can be computed as:

𝝁 (𝑙,𝑘)
𝑡 ′ = 𝑆𝑀 (

q
(𝑙,𝑘)
𝑡 ′√
𝐹 ′

ᵀ

· [k(𝑙,𝑘)
0 {k(𝑙,𝑘)

𝑡 }𝑡=1, · · · ,𝑇 ]) (9)

Encoding: The encoding z
(𝑙,𝑘)
𝑡 ′ at block 𝑙 can be computed as

following equation:

s
(𝑙,𝑘)
𝑡 ′ = 𝝁 (𝑙,𝑘)

𝑡 ′,0 v
(𝑙,𝑘)
0 +

𝑇∑
𝑡=1

𝝁 (𝑙,𝑘)
𝑡 ′,𝑡 v

(𝑙,𝑘)
𝑡 (10)

z′𝑙𝑡 ′ =𝑊𝐼

⎡⎢⎢⎢⎢⎢⎢⎣

s
(𝑙,1)
𝑡 ′
...

s
(𝑙,𝐾)
𝑡 ′

⎤⎥⎥⎥⎥⎥⎥⎦
+ z𝑙−1𝑡 ′ (11)

z𝑙𝑡 ′ = 𝑀𝐿𝑃 (𝐿𝑁 (z′𝑙𝑡 ′ )) + z′𝑙𝑡 ′ (12)

Classification Embedding: The final clip embedding is ob-

tained from the class token of the T-Former’s final layer, and the

final recognition results can be computed as:

y = 𝐹𝐶 (z𝑀0 ) ∈ R𝐽 (13)

where FC denotes full-connected network, 𝐽 denotes the classes of
the facial expression.

4 EXPERIMENTS

4.1 Datasets

DFEW: The DFEW [30] dataset is proposed recently, which is the

current largest benchmark for DFER in the wild. The video clips

are collected from over 1,500 movies worldwide, covering various

challenging interferences, such as extreme illuminations, occlu-

sions, and variant head pose. Moreover, each video in DFEW has

been individually labeled ten times by the annotators under pro-

fessional guidance and assigned to one of seven basic expressions,

i.e., happiness, sadness, neutral, anger, surprise, disgust, and fear.

The DFEW dataset includes 12,059 video clips, and all the samples

have been split into five same-size parts without overlap. The 5-

fold cross-validation is adopted as an evaluation protocol; in each

fold (fd1∼fd5), one part of the samples are used for testing, and

the remaining for training. Finally, all the predicted labels are used

to compute the evaluation metrics by comparing them with the

ground truth.

AFEW: The AFEW [17] dataset served as an evaluation plat-

form for the annual EmotiW from 2013 to 2019. AFEW contains

video clips collected from different movies and TV serials with

spontaneous expressions, illuminations, various head poses, and

occlusions. Same as the DFEW, each video clip in AFEW is assigned

to one of seven basic expressions. The AFEW dataset includes 1,809

video clips, and all the samples have been split into three splits:

train (773 video clips), validation (383 video clips), and test (653

video clips). Since the test split is not publicly available, we train

our model on train split and report results on validation split.
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Method
Metrics (%) Comlexity

UAR WAR (GFLOPs)

ResNet18 + GRU (Baseline) 51.68 64.02 7.78

ResNet34 + GRU 52.05 63.96 15.47

ResNet18 + S-Former + GRU 52.66 64.97 9.01

ResNet18 + T-Former 52.86 64.86 7.88

ResNet18 + BAM + T-Former 53.48 64.92 7.89

ResNet18 + S-Former + T-Former 53.69 65.70 9.11

Table 1: Evaluation of each component in Former-DFER.

4.2 Implementation Details

Data Pre-processing: For the AFEW dataset, the face region of

the video frame is detected using RetinaFace [14], and then the

face region is cropped and aligned according to the bounding box

and landmarks. It should be noted that the RetinaFace is robust

to occlusion and non-front pose. For the DFEW dataset, the video

frame’s face region is publicly available, so we use the processed

data directly. All the faces are resized to 112×112 pixels as an input.

Due to the low-light issues that existed in AFEW, a pre-trained deep

learning model, i.e., Enlighten-GAN [31], is used to enhance the

light.

Training Setting: Our models are trained on one GeForce RTX

2080 Ti GPU based on the open-source PyTorch [55] platform, and

parameters were optimized via the SGD optimizer. For the DFEW

dataset, consistent with the EC-STFL [30], we train our model from

scratch with a batch size of 32, initializing the learning rate as 0.01

and dividing it by ten every 40 epochs. The training operation is

stopped in the 100th epoch. For the AFEW datasets, due to the

quantity of the data samples is tiny, previous work pre-trained

models on different datasets (both static and dynamic). To make a

fair comparison, we first pre-train our model and other models on

DFEW (fd1) and then fine-tuning on AFEWwith the same setting (a

batch size of 32 and a learning rate of 0.001, the training operation

is stopped in the 20th epoch). In our method, the 𝑈 = 8, 𝑉 = 2.

Hence, the length of the dynamically sampled sequence is 16. And

the number of the self-attention heads 𝐾 = 8.

ValidationMetrics:Consistentwith the EC-STFL [30], we choose

the unweighted average recall (UAR, i.e., the accuracy per class di-

vided by the number of classes without considerations of instances

per class) and weighted average recall (WAR, i.e., accuracy) as the

metrics. We hope to improve models’ performance both in UAR

and WAR metrics.

4.3 Ablation Analysis

To validate the effectiveness of our Former-DFER, we conduct

an ablation analysis on the DFEW [30] benchmark (5-fold cross-

validation). In our experiments, each component’s effectiveness in

Former-DFER, the setting of the S-Former and the T-former, and the

number of the layers are studied, respectively. The ResNet18-GRU

is employed as a baseline in our experiments.

Evaluation of Each Component: We first study the effective-

ness of each component in our Former-DFER. The experimental

results are shown in Tab. 1. The results indicate that the use of

the S-Former can improve the UAR and WAR by 0.98% and 0.95%,

Method
Metrics (%) Comlexity

UAR WAR (GFLOPs)

ResNet18 + S-Former(w/o PE) + T-Former 53.30 65.04 9.11

ResNet18 + S-Former + T-Former(w/o PE) 52.07 64.47 9.11

ResNet18+ S-Former(conv5) + T-Former 53.05 65.41 9.59

ResNet18 + S-Former + T-Former(mean) 52.98 65.50 9.11

ResNet18 + S-Former + T-Former 53.69 65.70 9.11

Table 2: Evaluation of different settings for Former-DFER.

PE denotes positional embedding.

Setting Metrics Complexity

N M UAR WAR (GLOPs)

1 1 53.27 65.33 8.22

3 1 53.28 65.60 9.04

1 3 53.62 65.44 8.29

3 3 53.69 65.70 9.11

6 3 53.26 65.06 10.35

3 6 53.23 65.22 9.22

6 6 53.60 65.44 10.45

Table 3: Evaluation of different volumes of layers.

respectively. And the use of the T-Former can improve the UAR and

WAR by 1.18% and 0.84%, respectively. Moreover, if the S-Former

and T-Former are both employed, the UAR and WAR will be en-

hanced by 2.01% and 1.68%, respectively. Due to our Former-DFER’s

complexity is large than the baseline network, we adopt a deeper

baseline work to compare with our model. The result shows that

the performance of the deeper baseline network is still inferior

to our model. Furthermore, we also replace our S-Former with a

spatial-temporal attention module named BAM [54], and the results

indicate that our S-Former is superior to BAM. The experimental

results demonstrate that each part of the Former-DFER is practical,

and guiding the network to learn contextual information is crucial

for the DFER task. Such contextual information can effectively sup-

press the interference of the occlusion, non-frontal pose, and head

motion issues.

Evaluation of Setting: We then study the performance of the

different settings for our Former-DFER. The experimental results

are shown in Tab. 2. In our method, the learnable position embed-

dings are adopted to encode spatial and temporal positions, and

the results show that using the position embeddings is crucial to

S-Former and T-Former. We also place the S-Former after the last

convolutional block, namely extracting facial features by five con-

volutional blocks and obtaining final spatial facial features after

S-Former, but the result is inferior. Moreover, for T-Former, we con-

duct experiments to obtain the final clip embedding by averaging

all tokens’ outputs instead of the class token, however, it will entail

a decrease both in UAR and WAR.

Evaluation ofDepth: Finally, we study the effect of the different

number of layers for our Former-DFER. The experimental results

are shown in Tab. 3. The default number of layers for S-Former and

T-Former both are 3 in our method. To study the effect of the layer’s

number for our Former-DFER, we compare the shallower model

Poster Session 2 MM ’21, October 20–24, 2021, Virtual Event, China

1557



Figure 3: Visualization of the learned feature maps. There are three sequences are presented, which including the issues of

the occlusion, non-frontal pose, and head motion, respectively. For each sequence, the images in the first row are heatmaps

generated by the baseline, and the images in the second row are heatmaps generated by our Former-DFER.

fd1 fd2 fd3 fd4 fd5

Happiness Neutral Sadness Anger Surprise Disgust Fear

Figure 4: Illustration of feature distribution learned by the baseline (top) and our proposed Former-DFER (bottom) on fd1∼fd5.
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Method
Sample Accuracy of Each Emotion (%) Metrics (%) Comlexity

Strategies Happiness Sadness Neutral Anger Surprise Disgust Fear UAR WAR (GFLOPs)

C3D [60] TI 75.17 39.49 55.11 62.49 45.00 1.38 20.51 42.74 53.54 38.57

P3D [56] TI 74.85 43.40 54.18 60.42 50.99 0.69 23.28 43.97 54.47 n/a

R(2+1)D18 [61] TI 79.67 39.07 57.66 50.39 48.26 3.45 21.06 42.79 53.22 42.36

3D Resnet18 [24] TI 73.13 48.26 50.51 64.75 50.10 0.00 26.39 44.73 54.98 8.32

I3D-RGB [7] TI 78.61 44.19 56.69 55.87 45.88 2.07 20.51 43.40 54.27 6.99

VGG11+LSTM [26, 57] TI 76.89 37.65 58.04 60.70 43.70 0.00 19.73 42.39 53.70 31.65

ResNet18+LSTM [25, 26] TI 78.00 40.65 53.77 56.83 45.00 4.14 21.62 42.86 53.08 7.78

3D R.18+Center Loss [24, 68] TI 78.49 44.30 54.89 58.40 52.35 0.69 25.28 44.91 55.48 8.32

EC-STFL [30] TI 79.18 49.05 57.85 60.98 46.15 2.76 21.51 45.35 56.51 8.32

3D Resnet18 [24] DS 76.32 50.21 64.18 62.85 47.52 0.00 24.56 46.52 58.27 8.32

ResNet18+LSTM [25, 26] DS 83.56 61.56 68.27 65.29 51.26 0.00 29.34 51.32 63.85 7.78

Resnet18+GRU [11, 25] DS 82.87 63.83 65.06 68.51 52.00 0.86 30.14 51.68 64.02 7.78

Former-DFER (Ours) DS 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70 9.11

Table 4: Comparison with state-of-the-art methods on DFEW. Bold denotes the best. Underline denotes the second best. TI

denotes time interpolation [79, 80]. DS denotes dynamic sampling.

Methods
Sample Metrics (%) Comlexity

Strategies UAR WAR (GFLOPs)

EmotiW-2019 Baseline [15] n/a n/a 38.81 n/a

C3D [60] DS 43.75 46.72 38.57

I3D-RGB [7] DS 41.86 45.41 6.99

R(2+1)D [61] DS 42.89 46.19 42.36

3D ResNet18 [24] DS 42.14 45.67 8.32

ResNet18+LSTM [25, 26] DS 43.96 48.82 7.78

ResNet18+GRU [11, 25] DS 45.12 49.34 7.78

Former-DFER (Ours) DS 47.42 50.92 9.11

Table 5: Comparison with state-of-the-art methods on

AFEW.

and deeper model with our default setting. The experimental results

indicate that the performance of the shallower model is weak due

to its limited parameters. Moreover, for in-the-wild DFER tasks,

due to the limited training data, the deeper network always entails

overfitting. Therefore, increasing the model layer will not improve

the performance and even though decrease the performance.

4.4 Visualizations

To prove the robustness of the proposed Former-DFER under chal-

lenging conditions, we conduct an experiment to visualize the

learned facial feature maps shown in Fig. 3, in which occlusion,

non-frontal pose, and head motion are all included. For the first

facial sequence, we can notice that our method can ignore the oc-

clusion region and pay attention to the non-occlusion part. And for

the second sequence, the learned features contain more rich facial

information related to emotion even though the non-frontal pose.

Moreover, for the large head movement among frames, our method

is robust to the interference and can focus on the crucial part.

Furthermore, we also utilize t-SNE [62] to illustrate the feature

distribution learned by the baseline and our Former-DFER. The

comparison shown in Fig. 4 demonstrates that the proposed Former-

DFER can better gather the samples of the same category, proving

that our method can learn more discriminative features for in-the-

wild DFER.

4.5 Comparison with State-of-the-Arts

In this section, we compare our best results with several state-of-

the-art methods on the DFEW and AFEW benchmarks.

Comparison on DFEW: For the DFEW dataset, consistent with

the previous work [30], the experiments are conducted under 5-fold

cross-validation. Our Former-DFER and baseline models are all

trained by dynamic sampling, and we also experiment with some

methods using dynamic sampling as a comparison. The comparative

performance is shown in Tab. 4. As shown in the table, the proposed

method outperforms the compared methods both in UAR and WAR.

Specifically, our method shows an improvement of 8.34% and 9.19%

in UAR and WAR than the previous state-of-the-art method EC-

STFL. Moreover, our Former-DFER shows an improvement of 2.01%

and 1.68% in UAR and WAR than our baseline model. From Tab. 4,

we can catch that the poor performance on “disgust” and “fear”,

we think that the insufficient samples result in poor performance.

Regarding the DFEW dataset, the proportion of “disgust” and “fear”

is 1.22% and 8.14%, respectively.

Comparison on AFEW: We also conduct a further evaluation

on AFEW. For the AFEW dataset, in addition to the EmotiW-2019

Baseline, all the methods are first pre-trained on DFEW (fd1) and

then fine-tuned on AFEW with the same setting. The comparative

performance shown in Tab. 5 demonstrates that our Former-DFER

achieves the best results both in UAR and WAR. Moreover, the

proposed method improves the UAR and WAR of the baseline by

2.30% and 1.58%, respectively.

5 CONCLUSION

This paper proposes a dynamic facial expression recognition trans-

former (Former-DFER) for the in-the-wild scenario. Specifically,

the proposed Former-DFER mainly consists of two-part: a convolu-

tional spatial transformer (CS-Former) and a temporal transformer

(T-Former). The CS-Former consists of five convolution blocks and

𝑁 spatial encoders, which is designed to guide the network to
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learn occlusion- and pose-robust facial features from the spatial

perspective. And the temporal transformer consists of𝑀 temporal

encoders, which is designed to allow the network to learn contex-

tual facial features from the temporal perspective. The abundant

ablation studies have been studied to validate the effectiveness

of each part in our Former-DFER. Moreover, the heatmaps of the

leaned facial features indicate that the proposed method can handle

the issues such as occlusion, non-frontal pose, and head motion.

And the visualization of the feature distribution shows that the

proposed method can learn more discriminative facial features. Fur-

thermore, the comparison with the previous methods shows that

our Former-DFER achieves state-of-the-art results on two popular

benchmarks.
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